Solution to Assignment 2

Section 6.2

- 5. Let $f(x) := x^{1/n} (x 1)^{1/n}$, for $x \ge 1$. Then $f'(x) = \frac{1}{n}x^{1/n-1} - \frac{1}{n}$ $\frac{1}{n}(x-1)^{1/n-1}$ for $x > 1$. Define $g(t) := t^{1/n-1}$ for $t > 0$, $g'(t) = \left(\frac{1}{t}\right)$ $\left(\frac{1}{n} - 1\right) t^{1/n-2} < 0$ since $n \ge 2$. Then for $x > 1$, $f'(x) = \frac{1}{n}g(x) - \frac{1}{n}$ $\frac{1}{n}g(x-1) < 0$. Hence f is strictly decreasing for $x > 1$. Note $a > b > 0$, then $a/b > 1$, hence $f(a/b) < \lim_{x \to 1^+} f(x) = f(1)$, by continuity, i.e. $\left(\frac{a}{b}\right)$ $\big)^{1/n} - \big(\frac{a}{b}\big)^{1/n}$ $\left(\frac{a}{b} - 1\right)^{1/n} < 1 - (1 - 1) = 1 \Rightarrow a^{1/n} - b^{1/n} < (a - b)^{1/n}.$
- 9. For $x \neq 0$, $f(x) = 2x^4 + x^4 \sin \frac{1}{x^4}$ $\frac{1}{x} \ge 2x^4 - x^4 = x^4 > 0 = f(0)$ Hence f has an absolute minimum at $x = 0$. For $x \neq 0$, $f'(x) = 8x^3 + 4x^3 \sin \frac{1}{x}$ $\frac{1}{x} + x^4 \cos \frac{1}{x}$ \boldsymbol{x} $\left(-\frac{1}{4}\right)$ x^2 $= x^2 \left(8x + 4x \sin \frac{1}{2} \right)$ $\frac{1}{x} - \cos \frac{1}{x}$ x \setminus Define $a_n := 1/2n\pi$ and $b_n := 1/(2n\pi + \pi/2)$ with $\lim a_n = \lim b_n = 0$. Then $f'(a_n) = \left(\frac{1}{2n\pi}\right)^2 \left(\frac{8}{2n}\right)$ $\left(\frac{8}{2n\pi}-1\right)<\left(\frac{1}{2n\pi}\right)^2\left(\frac{8}{6n}\right)$ $\left(\frac{8}{6n} - 1\right) < 0$ if $n \ge 2$ $f'(b_n) = \left(\frac{1}{2n-1}\right)$ $2n\pi + \pi/2$ $\sqrt{27}$ 8 $\frac{8}{2n\pi + \pi/2} - \frac{4}{2n\pi +}$ $2n\pi + \pi/2$ $\Big\}\geq 0$ $\forall n$. Let $\varepsilon > 0$. Then $\exists N_1, N_2 \in \mathbb{N}$ s.t. $|a_{N_1}| < \varepsilon$ and $|b_{N_2}| < \varepsilon$, i.e. $a_{N_1}, b_{N_2} \in (-\varepsilon, \varepsilon)$. WLOG assume $N_1 \geq 2$. Hence $f'(a_{N_1}) < 0, f'(b_{N_2}) > 0$ with $a_{N_1}, b_{N_2} \in (-\varepsilon, \varepsilon)$ $\forall \varepsilon > 0$. Hence the derivative has both positive and negative values in every nbd of 0.
- 10. $\frac{g(x) g(0)}{2}$ $\frac{x}{x-0} = \frac{x + 2x^2 \sin(1/x)}{x}$ $\frac{\sin(1/x)}{x} = 1 + 2x \sin \frac{1}{x}$ $\frac{1}{x}$ \Rightarrow $g'(0) = 1 + 2 \lim_{x \to 0} x \sin \frac{1}{x}$ $\frac{1}{x} = 1 + 2(0) = 1.$ For $x \neq 0, g'(x) = 1 + 4x \sin(\frac{1}{x}) - 2\cos(\frac{1}{x})$. Define $a_n := 1/2n\pi$ and $b_n := 1/(2n\pi + \pi/2)$ with $\lim a_n = \lim b_n = 0$. Then $g'(a_n) = 1 - 2\cos 2n\pi = -1 < 0$, and $g'(b_n) = 1 + 4\left(\frac{1}{2n\pi + \frac{\pi}{2}}\right)$ 2 $) > 0.$

Let $\varepsilon > 0$. Then $\exists N_1, N_2 \in \mathbb{N}$ s.t. $|a_{N_1}| < \varepsilon$ and $|a_{N_2}| < \varepsilon$, i.e. $a_{N_1}, b_{N_2} \in (-\varepsilon, \varepsilon)$. Hence $g'(a_{N_1}) > 0, g'(b_{N_2}) < 0$ with $a_{N_1}, b_{N_2} \in (-\varepsilon, \varepsilon) \ \forall \ \varepsilon > 0$. Thus g cannot be monotonic on $(-\varepsilon, \varepsilon)$ $\forall \varepsilon > 0$, (read Theorem 6.2.7 carefully), i.e. any nbd of 0.

- 11. Take $f(x) := \sqrt{x}$ is continuous on [0, 1] and hence uniformly continuous on [0, 1]. For $x > 0$, $f'(x) = \frac{1}{2\sqrt{x}}$ is unbounded, which can be proved by putting $x = x_n := \frac{1}{4n^2} \to 0$.
- 12. Assume ∃ such function f. Then $f|_{[-1,1]}$ is differentiable on $[-1,1]$. By Darboux theorem, $\exists c \in (-1,1)$ s.t. $f'(c) = h(c) = 1/2$, which is contradiction, as h takes only values 0 and 1. Hence such function does not exist.

Consider
$$
f(x) = \begin{cases} x, & x \ge 0 \\ 0, & \text{o.w.} \end{cases}
$$
, $g(x) = \begin{cases} x, & x \ge 0 \\ 1, & \text{o.w.} \end{cases}$
Then $f(x) - g(x) = \begin{cases} 0, & x \ge 0 \\ -1, & \text{o.w.} \end{cases}$ is not a constant but $f'(x) = g'(x) = h(x)$ for $x \ne 0$.

- 17. By looking at the function $h = g f$, it is equivalent to showing $h' \geq 0$ and $h(0) = 0$ implies $h(x) \geq 0$. But this follows from the fact that $h' \geq 0$ implies h is increasing. As $h(0) = 0, h$ must be non-negative for all $x \geq 0$.
- 18. Let $\varepsilon > 0$. Then $\exists \delta$ s.t.

$$
\left|\frac{f(x)-f(c)}{x-c}-f'(c)\right|<\varepsilon,\ \ \forall\ 0<|x-c|<\delta.
$$

For $x < c < y$ inside $(c - \delta, c + \delta)$,

$$
-\varepsilon(y-c) < f(y) - f(c) - f'(c)(y-c) < \varepsilon(y-c)
$$
\n
$$
-\varepsilon(x-c) > f(x) - f(c) - f'(c)(x-c) > \varepsilon(x-c)
$$
\n
$$
-\varepsilon(y-x) < f(y) - f(x) - f'(c)(y-x) < \varepsilon(y-x)
$$
\n
$$
\left| \frac{f(y) - f(x)}{y - x} - f'(c) \right| < \varepsilon.
$$

19. Let $\varepsilon > 0$. By uniform differentiability, $\exists \delta := \delta(\varepsilon) > 0$ s.t. if $0 < |x - y| < \delta$, then

$$
\left|\frac{f(x) - f(y)}{x - y} - f'(x)\right| < \frac{\varepsilon}{2}, \left|\frac{f(x) - f(y)}{x - y} - f'(y)\right| < \frac{\varepsilon}{2}
$$
\n
$$
|f'(x) - f'(y)| \le \left|\frac{f(x) - f(y)}{x - y} - f'(x)\right| + \left|\frac{f(x) - f(y)}{x - y} - f'(y)\right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
$$
\nHence f' is continuous on I .

Supplementary Problems

- 1. Let f be a function defined on $\mathbb R$. It is called a periodic function if there is a non-zero number T such that $f(x+T) = f(x)$ for all x. The number T is called a period of f.
	- (a) Show that $nT, n \neq 0, \in \mathbb{Z}$, is also a period if f has a period T.
	- (b) Let f be differentiable. Show that f must be constant if it has a sequence of periods $\{T_n\}, T_n \to 0.$
	- (c) (Optional) Let f be differentiable. Show that if f is non-constant, there exists a positive period L satisfying, if T is another period of f, then $T = nL$ for some integer n. This L is called the minimal period of f .

Solution. (a) When $n \ge 2$, $f(x+nT) = f(x+(n-1)T+T) = f(x+(n-1)T) =$ $f(x + (n-2)T + T) = f(x + (n-2)T) = \cdots = f(x)$. On the other hand, $f(x-T) =$ $f(x-T+T) = f(x)$, so $-T$ is also a period if T is.

(b) Let $T_n \to 0$ be periods and x be any point. We have

$$
f'(x) = \lim_{n \to \infty} \frac{f(x + T_n) - f(x)}{T_n} = 0
$$
,

so $f' \equiv 0$ implies that f is a constant.

(c) By (b), the number $T^* = \inf\{T : T$ is a positive period} is positive. For any positive period T, we have $T = nT^* + P$ for some $P \in [0, T^*)$ and $n \ge 1$. It is easy to see that F is a period if it is non-zero. Since T^* is the infimum of all periods, $P = 0$.

Note: In this proof we used the fact that f is differentiable everywhere. In fact, one can show that a periodic function which is non-constant and continuous at one point has a minimal period. On the other hand, the function $g(x) = 1$ when x is rational and $g(x) = 0$ otherwise is a nowhere continuous function. Any positive rational number is a period of this function, so it does not have a minimal period.

2. Let f be a differentiable function defined on $(0, \infty)$. Suppose f satisfies $|f(x)| \leq C\sqrt{x}$ for all $x \in (0,\infty)$ for some constant $C > 0$. Show that there exists a sequence of numbers ${x_n}, x_n \to \infty$, such that $f'(x_n) \to 0$ as $n \to \infty$.

Solution. Applying Mean-Value Theorem to the intervals $[n, 2n]$, we find $x_n \in (n, 2n)$ **Solution.** Applying mean-value Theorem to the linet value μ , $2n_1$, we find $x_n \in (\mu, 2\pi)$
such that $|f'(x_n)| = |(f(2n) - f(n))|/(2n - n) \le (\sqrt{2n} - \sqrt{n})/n = 1/(\sqrt{2n} + \sqrt{n}) \to 0$.

- 3. (a) Let $p : \mathbb{R} \to \mathbb{R}$ be a polynomial $p(x) = a_0 + a_1x + \cdots + a_nx^n$, where $n \in \mathbb{N}$, $a_0, a_1, \ldots, a_n \in \mathbb{R}$ and $a_n \neq 0$. Suppose that p has n real roots. Show that p' has $n-1$ real roots.
	- (b) (Optional) What happens when p does not have n real roots? In this case, there are complex roots. Could you make a guess on the roots of p' ?

Solution. (a) Let $\alpha_1 < \alpha_2 < \cdots < \alpha_k$ be the k distinct real roots of $p(x) = 0, m_i > 0$ be the mulitiplicity of α_i . By Rolle's theorem or Mean value theorem, $\exists \beta_i \in (\alpha_i, \alpha_{i+1})$ such that

$$
p'(\beta_i) = 0, i = 1, 2, \dots, k - 1.
$$

Note that $\beta_i \neq \beta_j$ if $i \neq j$. If α_i is a real root of multiplicity m_i , then α_i will be a real root of $p'(x)$ having mulitiplicity m_i-1 . In total there are $\sum_{i=1}^{k} (m_i-1) + k-1 = \sum_{i=1}^{k} m_i-1$ $n-1$ real roots for $p'(x)$.

(b) p' may still have $n-1$ real roots. For example, $p(x) = x^2 + 1$ which has no real roots. $p'(x) = 2x + 1$ has $-1/2$ as a root. However, it may happen that p' does not have $n-1$ real roots. For instance, $p(x) = (x^2+1)^2$. $p'(x) = 4x(x^2+1)$ which has only one real root instead of three. A general theorem in complex analysis says a polynomial always has n many complex roots (including multiplicity). The roots of p' are contained inside the convex hull of the roots of p , that is, the smallest convex set in the complex plane containing all roots of p . It reduces to (a) when all roots of p are real. Wiki for Guass-Lucas Theorem. The proof of this theorem is not difficult.

4. It has been shown that a differentiable function f on (a, b) satisfying $f'(x) = 0$ everywhere must be a constant. Show that this result is not true when the assumption is relaxed to the right derivative of f exists and $f'_{+}(x) = 0$ everywhere.

Solution. The function $f(x) = -1, x \in (-1, 0)$ and $f(x) = 1, x \in (0, 1)$ satisfies $f'_{+}(x) = 0$ for all $x \in (-1, 1)$. But it is not a constant.