
Spring 2017 MATH2060A 1

Solution to Assignment 2

Section 6.2

5. Let f(x) := x1/n − (x− 1)1/n, for x ≥ 1.

Then f ′(x) =
1

n
x1/n−1 − 1

n
(x− 1)1/n−1 for x > 1.

Define g(t) := t1/n−1 for t > 0, g′(t) =

(
1

n
− 1

)
t1/n−2 < 0 since n ≥ 2.

Then for x > 1, f ′(x) =
1

n
g(x)− 1

n
g(x− 1) < 0. Hence f is strictly decreasing for x > 1.

Note a > b > 0, then a/b > 1, hence f(a/b) < lim
x→1+

f(x) = f(1), by continuity,

i.e.
(a
b

)1/n
−
(a
b
− 1
)1/n

< 1− (1− 1) = 1 ⇒ a1/n − b1/n < (a− b)1/n.

9. For x 6= 0, f(x) = 2x4 + x4 sin
1

x
≥ 2x4 − x4 = x4 > 0 = f(0)

Hence f has an absolute minimum at x = 0.

For x 6= 0, f ′(x) = 8x3 + 4x3 sin
1

x
+ x4 cos

1

x

(
− 1

x2

)
= x2

(
8x+ 4x sin

1

x
− cos

1

x

)
Define an := 1/2nπ and bn := 1/(2nπ + π/2) with lim an = lim bn = 0.

Then f ′(an) =

(
1

2nπ

)2( 8

2nπ
− 1

)
<

(
1

2nπ

)2( 8

6n
− 1

)
< 0 if n ≥ 2

f ′(bn) =

(
1

2nπ + π/2

)2( 8

2nπ + π/2
− 4

2nπ + π/2

)
> 0 ∀ n.

Let ε > 0. Then ∃ N1, N2 ∈ N s.t. |aN1 | < ε and |bN2 | < ε, i.e. aN1 , bN2 ∈ (−ε, ε).
WLOG assume N1 ≥ 2. Hence f ′(aN1) < 0, f ′(bN2) > 0 with aN1 , bN2 ∈ (−ε, ε) ∀ ε > 0.
Hence the derivative has both positive and negative values in every nbd of 0.

10.
g(x)− g(0)

x− 0
=
x+ 2x2 sin(1/x)

x
= 1 + 2x sin

1

x
⇒ g′(0) = 1 + 2 lim

x→0
x sin

1

x
= 1 + 2(0) = 1.

For x 6= 0, g′(x) = 1 + 4x sin( 1x) − 2 cos( 1x). Define an := 1/2nπ and bn := 1/(2nπ + π/2)
with lim an = lim bn = 0.
Then g′(an) = 1− 2 cos 2nπ = −1 < 0, and

g′(bn) = 1 + 4
( 1

2nπ + π
2

)
> 0.

Let ε > 0. Then ∃ N1, N2 ∈ N s.t. |aN1 | < ε and |aN2 | < ε, i.e. aN1 , bN2 ∈ (−ε, ε).
Hence g′(aN1) > 0, g′(bN2) < 0 with aN1 , bN2 ∈ (−ε, ε) ∀ ε > 0.
Thus g cannot be monotonic on (−ε, ε) ∀ ε > 0, (read Theorem 6.2.7 carefully), i.e. any
nbd of 0.

11. Take f(x) :=
√
x is continuous on [0, 1] and hence uniformly continuous on [0, 1].

For x > 0, f ′(x) =
1

2
√
x

is unbounded, which can be proved by putting x = xn :=
1

4n2
→ 0.

12. Assume ∃ such function f . Then f |[−1,1] is differentiable on [−1, 1].

By Darboux theorem, ∃ c ∈ (−1, 1) s.t. f ′(c) = h(c) = 1/2, which is contradiction, as h
takes only values 0 and 1. Hence such function does not exist.
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Consider f(x) =

{
x, x ≥ 0
0, o.w..

, g(x) =

{
x, x ≥ 0
1, o.w..

Then f(x)− g(x) =

{
0, x ≥ 0
−1, o.w..

is not a constant but f ′(x) = g′(x) = h(x) for x 6= 0.

17. By looking at the function h = g − f , it is equivalent to showing h′ ≥ 0 and h(0) = 0
implies h(x) ≥ 0. But this follows from the fact that h′ ≥ 0 implies h is increasing. As
h(0) = 0, h must be non-negative for all x ≥ 0.

18. Let ε > 0. Then ∃ δ s.t.∣∣∣∣f(x)− f(c)

x− c
− f ′(c)

∣∣∣∣ < ε, ∀ 0 < |x− c| < δ.

For x < c < y inside (c− δ, c+ δ),

−ε(y − c) < f(y)− f(c)− f ′(c)(y − c) < ε(y − c)

−ε(x− c) > f(x)− f(c)− f ′(c)(x− c) > ε(x− c)

−ε(y − x) < f(y)− f(x)− f ′(c)(y − x) < ε(y − x)∣∣∣∣f(y)− f(x)

y − x
− f ′(c)

∣∣∣∣ < ε.

19. Let ε > 0. By uniform differentiability, ∃ δ := δ(ε) > 0 s.t. if 0 < |x− y| < δ, then∣∣∣∣f(x)− f(y)

x− y
− f ′(x)

∣∣∣∣ < ε

2
,

∣∣∣∣f(x)− f(y)

x− y
− f ′(y)

∣∣∣∣ < ε

2

|f ′(x)− f ′(y)| ≤
∣∣∣∣f(x)− f(y)

x− y
− f ′(x)

∣∣∣∣+

∣∣∣∣f(x)− f(y)

x− y
− f ′(y)

∣∣∣∣ < ε

2
+
ε

2
= ε.

Hence f ′ is continuous on I.

Supplementary Problems

1. Let f be a function defined on R. It is called a periodic function if there is a non-zero
number T such that f(x+ T ) = f(x) for all x. The number T is called a period of f .

(a) Show that nT, n 6= 0,∈ Z, is also a period if f has a period T .

(b) Let f be differentiable. Show that f must be constant if it has a sequence of periods
{Tn}, Tn → 0.

(c) (Optional) Let f be differentiable. Show that if f is non-constant, there exists a
positive period L satisfying, if T is another period of f , then T = nL for some integer
n. This L is called the minimal period of f .

Solution. (a) When n ≥ 2, f(x + nT ) = f(x + (n − 1)T + T ) = f(x + (n − 1)T ) =
f(x + (n − 2)T + T ) = f(x + (n − 2)T ) = · · · = f(x) . On the other hand, f(x − T ) =
f(x− T + T ) = f(x), so −T is also a period if T is.

(b) Let Tn → 0 be periods and x be any point. We have

f ′(x) = lim
n→∞

f(x+ Tn)− f(x)

Tn
= 0 ,
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so f ′ ≡ 0 implies that f is a constant.

(c) By (b), the number T ∗ = inf{T : T is a positive period} is positive. For any positive
period T , we have T = nT ∗ + P for some P ∈ [0, T ∗) and n ≥ 1. It is easy to see that P
is a period if it is non-zero. Since T ∗ is the infimum of all periods, P = 0.

Note: In this proof we used the fact that f is differentiable everywhere. In fact, one can
show that a periodic function which is non-constant and continuous at one point has a
minimal period. On the other hand, the function g(x) = 1 when x is rational and g(x) = 0
otherwise is a nowhere continuous function. Any positive rational number is a period of
this function, so it does not have a minimal period.

2. Let f be a differentiable function defined on (0,∞). Suppose f satisfies |f(x)| ≤ C
√
x for

all x ∈ (0,∞) for some constant C > 0. Show that there exists a sequence of numbers
{xn}, xn →∞, such that f ′(xn)→ 0 as n→∞.

Solution. Applying Mean-Value Theorem to the intervals [n, 2n], we find xn ∈ (n, 2n)
such that |f ′(xn)| = |(f(2n)− f(n))|/(2n− n) ≤ (

√
2n−

√
n)/n = 1/(

√
2n+

√
n)→ 0.

3. (a) Let p : R → R be a polynomial p(x) = a0 + a1x + · · · + anx
n, where n ∈ N,

a0, a1, . . . , an ∈ R and an 6= 0. Suppose that p has n real roots. Show that p′ has
n− 1 real roots.

(b) (Optional) What happens when p does not have n real roots? In this case, there are
complex roots. Could you make a guess on the roots of p′?

Solution. (a) Let α1 < α2 < · · · < αk be the k distinct real roots of p(x) = 0,mi > 0 be
the mulitiplicity of αi. By Rolle’s theorem or Mean value theorem, ∃βi ∈ (αi, αi+1) such
that

p′(βi) = 0, i = 1, 2, . . . , k − 1.

Note that βi 6= βj if i 6= j. If αi is a real root of multiplicity mi, then αi will be a real root

of p′(x) having mulitiplicity mi−1. In total there are
∑k

i=1(mi−1)+k−1 =
∑k

i=1mi−1 =
n− 1 real roots for p′(x).

(b) p′ may still have n − 1 real roots. For example, p(x) = x2 + 1 which has no real
roots. p′(x) = 2x + 1 has −1/2 as a root. However, it may happen that p′ does not
have n − 1 real roots. For instance, p(x) = (x2 + 1)2. p′(x) = 4x(x2 + 1) which has only
one real root instead of three. A general theorem in complex analysis says a polynomial
always has n many complex roots (including multiplicity). The roots of p′ are contained
inside the convex hull of the roots of p, that is, the smallest convex set in the complex
plane containing all roots of p. It reduces to (a) when all roots of p are real. Wiki for
Guass-Lucas Theorem. The proof of this theorem is not difficult.

4. It has been shown that a differentiable function f on (a, b) satisfying f ′(x) = 0 everywhere
must be a constant. Show that this result is not true when the assumption is relaxed to
the right derivative of f exists and f ′+(x) = 0 everywhere.

Solution. The function f(x) = −1, x ∈ (−1, 0) and f(x) = 1, x ∈ (0, 1) satisfies f ′+(x) = 0
for all x ∈ (−1, 1). But it is not a constant.


